

Policy Implications of Propagation Analyses

Julius Knapp, Chief Office of Engineering and Technology Federal Communications Commission

International Symposium on Advanced Radio Technologies July 24, 2018

Note: The views expressed in this presentation are those of the author and may not necessarily represent the views of the Federal Communications Commission

What is Propagation?

Sounds Simple – But "Things" Get in the Way

Terrain

Buildings

Atmosphere & Rain

Foliage

People

Propagation: Terms of Art

Propagation is Statistical

Models

- Free space/Line of Sight
- Irregular Terrain Model (ITM) (Longley-Rice)
- E-Hata/Okumura
- High Frequency
- Millimeter–wave
- IF-77 EM Wave
- Etc.

Choosing the Right Model

- Frequency dependent
- Nature of the service:
 - Mobile
 - Fixed
 - Satellite
 - Broadcasting
- Tx & Rx location
- Tx power
- Antenna heights
- Etc.

Fig. 1. Path loss model family tree. Individual models are shown as circles and categories as are shown as rectangles. Major categories are green. Minor categories are blue.

256

Role of Propagation: Predicting Coverage

DTV Transition: "Your Results May Vary"

FCC TV Field Intensity
Prediction Curves

FCC Predicted TV Coverage

Role of Propagation: Interference Analysis

The predicted propagation loss (along with other factors) affects the required separation distance Or whether two services can reasonably share spectrum

Implications for Policy Makers

- What assumptions to make about coverage:
 - 90% availability 50% of the time?
 - 99% availability 90% of the time?
 - Affects quality/reliability of service
- What assumptions to make about interference:
 - Free space/line of sight (worst case)?
 - Risk that interference may occur some places/time?
 - Affects potential for others to access/share spectrum

How Might We Do Better? Two Ideas

Dynamic Spectrum Access

Spectrum Access **System** i.e. Citizen's **Broadband** Radio Service "Paint" Actual Path Loss By Collecting Levels From Devices

Improved Models

Propagation Implications for Millimeter Wave Spectrum (5G)

- Cell Size
- Number of cells for coverage
- Coverage into buildings
- Infrastructure challenges
- Affects costs
- Business case

Source: Phil Vigneron's presentation at ISART 2017

- Indoor coverage
- Number of access points that are needed

Thank You!